Constraint-based Abstraction of Reaction Networks to Boolean Networks

Athénaïs Vaginay

CLC center, Univ. Iowa, Iowa City, 26th February 2024

Systems biology

Formal modelling and reasoning about biological systems

A set of species of interest genes, proteins, cells, animals...

A model = an abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

Questions

How does the system evolve? Is the population of some cell

type stable over time?

How to control the system?

Cure a pathological system Produce more of some species of interest

Introduction • 1 /

A zoo of modelling approaches

Reaction network

continuous time Markov chain

ODEs

statistical models

Petri net

informal diagrams

Boolean transition system

Boolean automata network

A zoo of modelling approaches

Introduction _______ 2 /

A zoo of modelling approaches

Reaction network

continuous time Markov chain ODEs statistical models

Petri net informal diagrams

Boolean transition system

Boolean automata network

Boolean network, structure and dynamics

One transition function per species in \mathcal{S} : $\left\{f_{\mathsf{X}}:\mathbb{B}^{|\mathcal{S}|} \to \mathbb{B}\right\}_{\mathsf{X} \in \mathcal{S}} \qquad \mathbb{B} = \left\{0,1\right\}$

Example -

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$f_A := 0$$

$$f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Boolean network, structure and dynamics

One transition function per species in S:

$$\left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$$
 $\mathbb{B} = \{0, 1\}$

Influence graph

$$IG = (S, E \subseteq S \times S, \sigma : E \to \{+, -, \underline{+}\})$$

Example -

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$f_A := 0$$

$$f_{\mathsf{B}} := (\mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{B} \wedge \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Boolean network, structure and dynamics

One transition function per species in S:

$$\left\{f_{\mathsf{X}}:\mathbb{B}^{|\mathcal{S}|}\to\mathbb{B}\right\}_{\mathsf{X}\in\mathcal{S}}$$

$$\mathbb{B}=\{0,1\}$$

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$f_A := 0$$

$$\mathit{f}_{B} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Influence graph

$$\textit{IG} = (\mathcal{S}, \textit{E} \subseteq \mathcal{S} \times \mathcal{S}, \sigma : \textit{E} \rightarrow \{+, -, \underline{+}\})$$

Transition graph $TG = (\mathbb{B}^{|S|}, E \subset \mathbb{B}^{|S|} \times \mathbb{B}^{|S|})$, update scheme

synchronous: $\{\{A, B, C\}\}\$ async.: $\{\{A\}, \{B\}, \{C\}\}\$ general async.: $\mathcal{P}(\mathcal{S}) \setminus \emptyset$

Reaction network

continuous time Markov chain

ODEs

Petri net

Boolean transition system

Boolean automata network $\mathcal{B} = \{f_X : \mathbb{B}^{|S|} \to \mathbb{B}\}_{X \in \mathcal{S}}$ synchronous asynchronous

general asynchronous

Reaction network

$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$

continuous time Markov chain

ODEs

Petri net

Boolean transition system

Boolean automata network $\mathcal{B} = \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous

Reaction network

$$\mathcal{R} = \{ \mathcal{R}_i : R_i \xrightarrow{e_i} P_i \}_{i=1...m}$$

$$A + B \xrightarrow{e} 2C$$

continuous time Markov chain

ODEs

Petri net

Boolean transition system

Boolean automata network $\mathcal{B} = \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous

Reaction network

$$\mathcal{R} = \{ \mathcal{R}_i : R_i \xrightarrow{e_i} P_i \}_{i=1...m}$$

$$A + B \xrightarrow{e} 2C$$

continuous time Markov chain

ODEs

$$\dot{A} = \dot{B} = -e; \dot{C} = 2e$$

Petri net

Boolean transition system

Boolean automata network $\mathcal{B} = \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous

$$\mathcal{R} = \{ \mathcal{R}_i : R_i \xrightarrow{e_i} P_i \}_{i=1...m}$$

$$A + B \xrightarrow{e} 2C$$

continuous time Markov chain

$$p(e): A--; B--; C+=2$$

Petri net

ODEs

$$\dot{A} = \dot{B} = -e; \dot{C} = 2e$$

Boolean transition system

Boolean automata network $\mathcal{B} = \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous

Reaction network

$$\mathcal{R} = \{ \mathcal{R}_i : R_i \xrightarrow{e_i} P_i \}_{i=1...m}$$
$$A + B \xrightarrow{e} 2C$$

continuous time Markov chain

$$p(e): A--; B--; C+=2$$

Petri net

Boolean transition system

ODEs

$$\dot{A} = \dot{B} = -e; \dot{C} = 2e$$

Boolean automata network $\mathcal{B} = \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous

Reaction network

$$\mathcal{R} = \{ \mathcal{R}_i : R_i \xrightarrow{e_i} P_i \}_{i=1...m}$$

$$A + B \xrightarrow{e} 2C$$

continuous time Markov chain

$$p(e): A--; B--; C+=2$$

Petri net

Boolean transition system

$$A = B = 0$$
 or 1; $C = 1$

ODEs

$$\dot{A} = \dot{B} = -e; \dot{C} = 2e$$

Boolean automata network $\mathcal{B} = \left\{ f_{X} : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous

Introduction

Reaction network
$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$
 continuous time Markov chain ODEs
$$\text{Petri net}$$
 Boolean transition system
$$\text{Boolean automata network}$$

$$\mathcal{B} = \left\{f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B}\right\}_{X \in \mathcal{S}}$$

synchronous asynchronous

general asynchronous

[Fages, Soliman, 2008a]

formal abstraction

Reaction network
$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$

continuous time Markov chain ---- ODEs

Petri net

Boolean transition system

formal abstraction formal approximation

Boolean automata network $\mathcal{B} = \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$ synchronous asynchronous general asynchronous

[Fages, Soliman, 2008a]

[Fages, Soliman, 2008a]

[Fages, Soliman, 2008a]

Problem statement and outline

Automatic transformation (abstraction) of reaction networks to Boolean networks

- 1. Introduction and preliminaries
- 2. The method SBML2BNET and its guarantees
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Outline

- 1. Introduction and preliminaries
- 2. The method SBML2BNET and its guarantees
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

SBML2BNET and its guarantees

structure constraints $\begin{array}{c} RN \\ A+B \rightarrow 2 \times C \\ A+C \rightarrow A+B \end{array}$ $\begin{array}{c} BN \\ ? \end{array}$

dynamics constraints

STEP 1: Retrieve constraints from the input RN

dynamics constraints

STEP 1: Retrieve constraints from the input RN

Structure: influence graph

1.1: syntactic parsing of the RN

STEP 1: Retrieve constraints from the input RN

1.1: syntactic parsing of the RN

STEP 1: Retrieve constraints from the input RN

Structure: influence graph

Dynamics: Boolean transitions

1.1: syntactic parsing of the RN 1.2: ODEs simulation + binarisation

STEP 1: Retrieve constraints from the input RN

1.1: syntactic parsing of the RN 1.2: ODEs simulation + binarisation

1.3: abstract simulation of the ODEs

STEP 1: Retrieve constraints from the input RN

1.1: syntactic parsing of the RN 1.2: ODEs simulation + binarisation 1.3: abstract simulation of the ODEs

STEP 2: BN synthesis

Running example $\mathcal{R}_{\mathsf{enz}}$

Its ODEs (reconstructed)

$$\begin{cases} \dot{\mathsf{S}} \ = -\,e_{\mathrm{on}} \,+\,e_{\mathrm{off}} \\ \dot{\mathsf{E}} \ = -\,e_{\mathrm{on}} \,+\,e_{\mathrm{off}} + e_{\mathrm{cat}} \\ \dot{\mathsf{C}} \ = e_{\mathrm{on}} \,-\,e_{\mathrm{off}} + e_{\mathrm{cat}} \\ \dot{\mathsf{P}} \ = 2 \times e_{\mathrm{cat}} \end{cases}$$

Its parameters (given)

$$e_{
m on} = 10^6 imes extsf{E} imes extsf{S}$$
 $e_{
m off} = 0.2 imes extsf{C}$ $e_{
m cat} = 0.1 imes extsf{C}$

Outline

- 1. Introduction and preliminaries
- 2. The method SBML2BNET and its guarantees

STEP 1: Retrieve constraints from the input reaction network

Structure: influence graph

▶ 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions

▶ 1.2: ODEs simulation + binarisation

▶ 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Boolean transitions

Retrieve an influence graph and

Which contraints to build the influence graph $\mathcal{G}_{\mathcal{R}}$?

Inference of the relationships between the species using static analysis of \mathcal{R} [Fages, Soliman, 2008b]

$$Y \xrightarrow{-} X \in \mathcal{G}_{\mathcal{R}}$$
 if $\exists \mathcal{R} = R \xrightarrow{e} P$ st $Y \in R$ and $R(X) > P(X)$

$$Y \stackrel{+}{\Rightarrow} X \in \mathcal{G}_{\mathcal{R}}$$
 if $\exists \mathcal{R} = R \stackrel{e}{\rightarrow} P$ st $Y \in R$ and $R(X) < P(X)$

Guarantee: Overapproximates the possible signs of $\frac{\partial X}{\partial Y}$ \rightarrow it captures all the **direct influences** between the species \checkmark

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S} = \{-1, 0, 1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S} = \{-1,0,1\}$) of the variables values of the ODE system species values derivative value

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S} = \{-1,0,1\}$) of the variables values of the ODE system species values derivative value

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S} = \{-1,0,1\}$) of the variables values of the ODE system

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

X was above 0 and its derivative was negative $plus - plus = unknown \sim$ nondeterminism

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

X was above 0 and its derivative was negative $plus - plus = unknown \sim$ nondeterminism

Abstract simulation — In practice

Contribution

$$\mathcal{V} = \bigcup_{X \in \mathcal{S}} \left\{ X, \mathring{X}, \underset{\mathrm{next}}{X}, \mathring{\underset{\mathrm{next}}{X}} \right\}$$

- ightharpoonup Causal relationships encoded by a first-order logic formula ϕ
- Solve ϕ on $\mathbb{S} = \{-1, 0, 1\}$ $\Rightarrow \text{ relation } \mathbb{B}^{\left| \mathcal{S} \cup \hat{\mathcal{S}} \right|} \times \mathbb{B}^{\left| \substack{\mathcal{S} \cup \mathcal{S} \\ \text{next} \text{ next} \right|}}$
- $lackbox{\sf Restrict}$ the solutions on $\mathcal{S} \cup \underset{\mathrm{nex}}{\mathcal{S}}$

$$\rightsquigarrow \mathsf{relation} \ \mathbb{B}^{|\mathcal{S}|} \times \mathbb{B}^{\left| \substack{\mathcal{S} \\ \mathrm{next}} \right|}$$

Guarantee

- Keep the causalities of changes
- Proof of correctness: overapproximation of an ideal Euler simulation (perfectly adjusted time step and no computation error)

FOBNN: First-Order Boolean networks with nondeterministic updates

Abstract simulation — Example on \mathcal{R}_{enz}

Expected transitions [SECP]: 1100 → **10 → ***1

Abstract simulation

Outline

- 1. Introduction and preliminaries
- 2. The method SBML2BNET and its guarantees

STEP 1: Retrieve constraints from the input reaction network

Structure: influence graph

▶ 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions

▶ 1.2: ODEs simulation + binarisation

▶ 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

- 3. Evaluation of the approach
- 4. Conclusion and perspectives

ASK&D-BN

STEP 2: Boolean network synthesis with

2.1 Local search species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

2.1 Local search species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

 $\begin{tabular}{lll} Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint $Answer-Set Programming $Answer-S$

2.1 Local search species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

 $\begin{array}{c} \mathsf{Generate} \; \mathsf{candidates} \to \mathsf{Structure} \; \mathsf{constraint} \to \mathsf{Dynamic} \\ \mathsf{constraint} \; \to \; \mathsf{Minimality} \; \mathsf{constraint} \\ & \mathsf{Answer-Set} \; \mathsf{Programming} \end{array}$

2.2 Global assembly produce all the possible BNs

 ${\sf Generate\ candidates} \to {\sf Structure\ constraint} \to {\sf Dynamic\ constraint} \to {\sf Minimality\ constraint}$

Search space: 2^{3^k} non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

ideally: the set of minimal DNF with k inputs.

 $\textbf{Generate candidates} \rightarrow \textbf{Structure constraint} \rightarrow \textbf{Dynamic constraint} \rightarrow \textbf{Minimality constraint}$

Search space: 2^{3^k} non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions without subsumption and not locally-adjacent

 $\textbf{Generate candidates} \rightarrow \textbf{Structure constraint} \rightarrow \textbf{Dynamic constraint} \rightarrow \textbf{Minimality constraint}$

Search space: 2^{3^k} non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions without subsumption and not locally-adjacent

```
invalid candidates: valid candidate:  (A \land \neg B) \lor (A \land \neg B) \lor (\neg A \land \neg C)   (A \land A \land \neg B) \lor (\neg A \land \neg C)   (A) \lor (A \land B)   (A \land B) \lor (A \land \neg B)   (A \land B) \lor (A \land \neg B)
```

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $m{--}$ (1) input: Boolean transitions $m{-}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

— (1) input: Boolean transitions —

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input output		
	С	А	
input influence graph (unsigned)			
A C P			
₾ B	ВС	В	
	AC	С	

 $\mathsf{Generate} \ \mathsf{candidates} \ \to \ \mathsf{Structure} \ \mathsf{constraint} \ \to \ \mathsf{Dynamic} \ \mathsf{constraint} \ \to \ \mathsf{Minimality} \ \mathsf{constraint}$

— (1) input: Boolean transitions —

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

						putative input	putative input		
						С	А		
010 → 011 ①	2	100	→ ③	001		ВС	В		
						AC	С		

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $m{---}$ (1) input: Boolean transitions $m{--}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input	output
С	Α

$$010 \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c$$

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

— (1) input: Boolean transitions —

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	:
	С	Α	
	1	1	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BC	В	
	AC	С	

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $oldsymbol{---}$ (1) input: Boolean transitions $oldsymbol{---}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	output	
	С	Α	$\overline{}$	
	0	0	(3)	
	1	1	2	
C A. B. C A. C				
$ \begin{array}{cccc} C & A, B, C & A, C \\ 010 \longrightarrow 011 & \longrightarrow & 100 \longrightarrow & 001 \end{array} $	BC	В		
	-			
	AC	C		

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

— (1) input: Boolean transitions —

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	
	С	Α	
	0	0	(3)
	1	1	2
C A, B, C A, C			
$010 \longrightarrow 011 \longrightarrow 100 \longrightarrow 001$	BC	В	
1 2 3	11	0	2
-			
	AC	C	
	00	1	1
	01	0	2
	10	1	3

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

 X_t : continuous value of X at time t θ : binarisation threshold for X

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

 \mathcal{U} : set of unexplained time steps

 $\mathsf{Generate} \ \mathsf{candidates} \ \to \ \mathsf{Structure} \ \mathsf{constraint} \ \to \ \mathsf{Dynamic} \ \mathsf{constraint} \ \to \ \mathsf{Minimality} \ \mathsf{constraint}$

(2) input: time series

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

 \mathcal{U} : set of unexplained time steps

 $E = \sum_{t \in \mathcal{U}} |\theta - X_t|$ To minimise (ideally 0)

ASK&D-BN— Local search

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \leadsto most general conditions

putative input	observed output
AB	X
00	
01	0
10	1
11	

ASK&D-BN— Local search

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \leadsto most general conditions

putative input AB	observed output X	possible completions			etions
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

ASK&D-BN— Local search

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \leadsto most general conditions

0	1	0	1				
0	0	0	0				
1			3				
	1	1	1				
0	0	1	1				
A ∧ ¬I	3 ¬B	Α	$A \lor \neg B$				
2	1	1	2				
card. min.							
	_	2 1 card.					

ASK&D-BN— Global assembly

Cartesian product of the set of transition functions synthesised for each species

$$\mathcal{B}_{1} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{1}\}$$

$$\mathcal{B}_{2} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{3} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{3}\}$$

$$\mathcal{B}_{4} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{1}\}$$

$$\mathcal{B}_{5} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{6} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{3}\}$$

Outline

- 1. Introduction and preliminaries
- 2. The method SBML2BNET and its guarantees
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Evaluation of the approach

Evaluation of the approach

- The BN synthesis itself [Vaginay et al., 2021] ASK&D-BN versus REVEAL¹, Best-Fit² and Caspo-TS³
- 2. One specific variant of the complete approach on real-world reaction networks [Vaginay et al., 2021, Vaginay et al., 2022] influence graph + time series and midrange binarisation
- 3. Several variants of the complete approach on \mathcal{R}_{enz} compare concrete and abstract simulation

¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

Evaluation of the approach

A. thaliana5 species, 10 transitions

yeast 4 species, 7 transitions

A. thaliana5 species, 10 transitions

yeast
4 species, 7 transitions

REVEAL fails

A. thaliana5 species, 10 transitions

REVEAL fails

yeast
4 species, 7 transitions

Best-Fit lacks consistency

A. thaliana5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

yeast
4 species, 7 transitions

Best-Fit lacks consistency

A. thaliana5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

yeast 4 species, 7 transitions

- ▶ Best-Fit lacks consistency
- ► ASK&D-BN returns a small number of BN, with good coverage and low variance ✓

A. thaliana5 species, 10 transitions

- REVEAT, fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint
- \sim Confirmed on > 300 datasets generated from existing BNs from the repository of PyBoolNet

yeast4 species, 7 transitions

- ► Best-Fit lacks consistency
- ASK&D-BN returns a small number of BN, with good coverage and low variance √

Outline

- 1. Introduction and preliminaries
- 2. The method SBML2BNET and its guarantees
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Conclusion and perspectives

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

► Methodology: Boolean networks synthesis from constraints

Structure: Influence graph from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

 correct overapproximation of perfect Euler that captures causality

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

- correct overapproximation of perfect Euler that captures causality
- ► Implementation: the SBML2BNET pipeline (+ ASK&D-BN)

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

- ► Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions
 - captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

- correct overapproximation of perfect Euler that captures causality
- ► Implementation: the SBML2BNET pipeline (+ ASK&D-BN)
- ▶ Evaluation

From RN to BN: the big picture

- 1. Formalize the relationship between RN and BN
- Use BNs to facilitate some analyses on RN
- 3. Improve the BN synthesis methods

Perspectives

 Formalize the relationship between RN and BN Two conjectures to investigate(*), reverse process(*)

2. Facilitate RN analyses

Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors(*))

3. Improve the BN synthesis methods

Investigate, in a controled environnement

- ▶ when we can't fullfill the constraints(*)
- overfitting to the sequence of configurations?
- impact of the choice of the binarisation procedure and error measure

Perspectives

- Formalize the relationship between RN and BN Two conjectures to investigate(*), reverse process(*)
- Facilitate RN analyses
 Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors(*))
- 3. Improve the BN synthesis methods Investigate, in a controlled environnement
 - when we can't fullfill the constraints(*)
 - overfitting to the sequence of configurations?
 - impact of the choice of the binarisation procedure and error measure

Thank you for your attention.

Publications

J. Niehren, C. Lhoussaine and **AV**. Core SBML and its Formal Semantics CMSB: International Conference on Computational Methods in Systems Biology 2023

Abstract simu. J. Niehren, AV, and C. Versari. Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022

SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks CNA: Complex Networks & Their Applications X 2022

SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks Applied Network Science 2022

ASK&D-BN AV, T. Boukhobza, and M. Smaïl-Tabbone. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data OLA:

Optimization and Learning 2021

A. Hirtz, N. Lebourdais, F. Rech, Y. Bailly, **AV**, M. Smaïl-Tabbone, H. Dubois-Pot-Schneider, and H. Dumond. *GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation* Cells 2021

References I

- [Bornholdt, 2005]
 S. Bornholdt
 Less Is More in Modeling Large Genetic Networks,
 2005
- ► [Fages, Soliman, 2008a]
 F. Fages, S. Soliman,
 Abstract Interpretation and Types for Systems Biology,
 Theoretical Computer Science, vol. 403, pp. 52–70, 2008
- ▶ [Fages, Soliman, 2008b]
 F. Fages, S. Soliman,
 From Reaction Models to Influence Graphs and Back: A Theorem,
 Lecture Notes in Computer Science, pp. 90–102 2008
- ► [Hoops et al., 2006]
 S. Hoops et al.
 COPASI—a COmplex PAthway Simulator,
 Bioinformatics, vol. 22, pp. 3067–3074 2006

References II

► [Kohl et al., 2010]

P. Kohl et al.

Systems Biology: An Approach,

Clinical Pharmacology & Therapeutics vol. 88-1 pp. 25–33 2010,

► [Lähdesmäki et al., 2003]

H. Lähdesmäki et al.

On Learning Gene Regulatory Networks under the Boolean Network Model, *Machine Learning*, vol. 52-1 pp. 147–167 2003,

▶ [Liang et al., 1998]

S. Liang et al.

REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

Pacific Symposium on Biocomputing. pp. 18–29, 1998,

► [Malik-Sheriff et al., 2020]

R. Malik-Sheriff et al.

BioModels—15 Years of Sharing Computational Models in Life Science *Nucleic Acids Research* vol. 48-D1, pp. D407-D415, 2020

References III

- ▶ [Niehren et al., 2022]
 - J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022,

- [Ostrowski et al., 2016]
 M. Ostrowski et al.
 Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming Biosystems vol. = 149, pp. 139–153, 2016
- ► [Vaginay et al., 2021]
 - A. Vaginay, et al.

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data

Communications in Computer and Information Science pp. 156–170, 2021

References IV

- ► [Vaginay et al., 2021]
 A. Vaginay, et al.
 From Quantitative SBML Models to Boolean Networks
 Complex Networks & Their Applications X 2021
- ► [Vaginay et al., 2022]
 A. Vaginay, et al.
 From Quantitative SBML Models to Boolean Networks
 Applied Network Science vol. 7-1 pp. 1–23, 2022

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55 some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$\mathsf{A} + \mathsf{B} \xrightarrow{f(\mathsf{A},\mathsf{B}, \textcolor{red}{\mathsf{E}})} \mathsf{C}$$

⁴[Fages et al. 2012]

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55 some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$A + B \xrightarrow{f(A,B,E)} C$$

> 60% of SBML models from Biomodels are not "well-formed" 4 , but some can be fixed \rightarrow add a step in the pipeline

⁴[Fages et al. 2012]

FOBNN fixed-points with SAT

Given an FOBNN ϕ with variables $\mathcal{V} = \bigcup_{X \in \mathcal{S}} \{X, \mathring{X}, \underset{next}{X}, \underset{next}{\mathring{X}} \}$, find the signed assignments $\alpha: \mathcal{V} \to \{1, 0, -1\}$ such that:

$$\forall X \in \mathcal{S} : \alpha(X) = \alpha \begin{pmatrix} X \\ next \end{pmatrix}$$
 (and no others!)

with Hans-Jörg:)))

Set of attributes V (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) F is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ F holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $F \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symetry, transitivity, antisymetry)

Set of attributes \mathcal{V} (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Simon Vilmin (AMU) and Pierre Faure–Giovagnoli (LIRIS): relax the equality by using a predicate ρ instead, study how the complexity of the problems depends on the properties of ρ (reflexivity, symmetry, transitivity, antisymmetry)

Set of variables $V = \tilde{S} \cup \underset{\text{next}}{\tilde{S}}$ (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure—Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Simon Vilmin (AMU) and Pierre Faure—Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	C	A	B	$_{ m next}^{\sf C}$	$X \subseteq S$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	•
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r $(r \models f)$ if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure—Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A next	$_{ m next}^{ m B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \leadsto$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A next	$_{ m next}^{ m B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \leadsto$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $V = S \cup S$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	C	A	B	$_{ m next}^{\sf C}$	$X \subseteq S$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f ($f \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	$_{ m next}^{ m B}$	$_{ m next}^{\sf C}$	$X\subseteq\mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t ₁ t ₂ t ₃	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \leadsto$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A next	B next	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t ₁	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f ($f \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	C	A	B	$_{ m next}^{\sf C}$	$X \subseteq S$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f ($f \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	$_{ m next}^{ m B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
-t ₁	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f ($f \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Boolean network Influence thinking

differential Boolean network Influence thinking

Our abstraction versus other abstractions Reaction-thinking Reaction network differential Approximatio Boolean network

Influence thinking

Our abstraction versus other abstractions

Our abstraction versus other abstractions

Our abstraction versus other abstractions Reaction-thinking

Reaction network

Boolean network Influence thinking

[Fages, Soliman, 2008a]

[Fages, Soliman, 2008a]

Learn reaction networks from Boolean transitions

Implication base with variables in \mathcal{S} : $\mathcal{R} = \{R_i \to P_i\}_{i=1...m}$ Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} " Closure system = the set \mathcal{C} of closed-sets of \mathcal{R} \mathcal{C} ordered by $C \to A$ a lattice

$$\mathcal{R} = \{$$

$$\mathcal{R}_1 : A + B \rightarrow C + D$$

$$\mathcal{R}_2 : A + C \rightarrow D$$

$$\mathcal{R}_3 : B + D \rightarrow C$$

$$\}$$

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

Reaction network with species in $S: \mathcal{R} = \{R_i \to P_i\}_{i=1...m}$

Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} " Closure system = the set \mathcal{C} of closed-sets of \mathcal{R}

 $\mathcal C$ ordered by $\subseteq \, \leadsto \,$ a lattice

$$\mathcal{R} = \{$$

$$\mathcal{R}_1 : A + B \rightarrow C + D$$

$$\mathcal{R}_2 : A + C \rightarrow D$$

$$\mathcal{R}_3 : B + D \rightarrow C$$

given a closure system, find the implication base(s)

given Boolean fixed-points, find the reaction network(s)

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

