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Curriculum



Me and my background

Currently (for two more weeks): post-doc in MTV, under the
supervision of Löıc Paulevé.

▶ Medical studies, 1 year

▶ Biology, licence

▶ Bio-info, master + “ingénieure d’études” a few months

▶ Theoretical systems biology (∼ computer science), PhD,
postdoc, . . .

Reach out: room B353, athenais.vaginay@labri.fr

My first time in this amphi: in 2021 (CMSB conference).
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Introduction



Systems biology
Formal modelling and reasoning about biological systems
A model = an abstract representation (abbreviated and convenient)

of the reality (more complex and detailed)

A set species of species of interest genes, proteins, cells, animals. . .

Questions

How does the system evolve?
Is the population of some cell

type stable over time?

How to control the system?
Cure a pathological system

Produce more of some species of

interest
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The workflow of system biology [Kohl et al., 2010]

Biological system Wet data

Dry data Model
experiment

analysis

experiment

analysis

test

test

Wet lab
in vivo

Dry lab
in silico

synthesis

Hypotheses
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The workflow of system biology [Kohl et al., 2010]

Biological system Wet data

Dry data Model
experiment

analysis

experiment

analysis

test

test

Wet lab
in vivo

Dry lab
in silico

synthesis

Hypotheses

Synthesis:

▶ from available knowledge and data about the structure and the

dynamics

▶ parameter fitting task find models that optimise some criteria

Experiment: e.g. simulation = execution of the model
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A zoo of modelling approaches

Boolean automata network

Reaction network

ODEscontinuous time Markov chain

Petri net

Boolean transition system

statistical models

informal diagrams

Model = rules A → B

Boolean networks

Boolean functions (propositional logics)
Influence of regulators on regulees

Transition graph
Discrete time, boolean values

01
00 11

10

B = f (A)

Reaction networks
Transformation of reactants into products

Differential equations

Continuous time and values

temps

qu
an

ti
ti
é

Ḃ = f (A)

Time series
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Ḃ = f (A)

Time series

Introduction 5 / 13



A zoo of modelling approaches
Reaction network

Boolean automata network

ODEscontinuous time Markov chain

Petri net

Boolean transition system

statistical models

informal diagrams

Model = rules A → B

Boolean networks

Boolean functions (propositional logics)
Influence of regulators on regulees

Transition graph
Discrete time, boolean values

01
00 11

10

B = f (A)

Reaction networks
Transformation of reactants into products

Differential equations

Continuous time and values

temps

qu
an

ti
ti
é
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Formal methods for the
simulation of reaction networks



Static analysis of a reaction network

R = {Ri : Ri
ei−→ Pi | i = 1 . . .m}

reaction, reactants, products, kinetics

Reaction graph
(S ∪R,E ⊆ (S ×R) ∪ (R× S))

Example

S = {A,B,C}

R1 : A + B
e1−→ 2× C

R2 : C
e2−→ B

A

B CR1

R2

; A can only decrease

Static analysis = derive correct conclusions about the dynamics without having
to actually simulate the model.
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Abstract simulation of a reaction network
Reaction network

R = {Ri : Ri
ei−! Pi}i=1...m

Abstract simulation = derive correct conclusions using a simpler simu. of the model
[Cousot, Cousot, 1977], [Fages, Soliman, 2008a]
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between two semantics
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Formal methods for the
simulation of Boolean networks



The dynamics of a Boolean network using a SAT solveur
A BN f is a function Bn → B

n usually expressed in propositional logics.

Transition graph: G = (Bn,E ⊆ Bn ×Bn). Is (x , x ′) ∈ G ?
Fixpoint: a configuration x ∈ Bn such that f (x) = x .
Trapspace: a subcube t of Bn such that ∀x ∈ t : f (x) ∈ t

Example

x ′1 = (x1∧x2∧x3)∧x ′2 = (x1∨x3)∧x ′3 = ((x2∧x3)∨(x1∧x2∧x3)∨(x1∧x2∧x3))
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Boolean networks as concurent systems
The impact of updates

A Boolean network is a function f : Bn → B
n.

Alternatively, f consists of n local functions Bn → B (one per
species in S).

The update mode dictates which components can be updated at
each time.

synchronous: {{A,B,C}}
111

000

001010

011110 101

100

async.: {{A}, {B}, {C}}
111

000

001010

011110 101

100

111

011 101110

010 001

000

100

general async.: P(S) \ ∅
111

000

001010

011110 101

100

111

011 101110

010 001

000

100

111

011 101110

001010 100

000

Strongly impacts the dynamics → adapt your SAT constraints accordingly
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Formal methods for the
synthesis of Boolean networks



Formal synthesis of Boolean networks

Boolean network

?
influence graph transition graph

{
fX : B|S| ! B | X ∈ S

}

Tool: ASP (Answer set programming) provides an expressive
modeling language + fast solvers
Check BoNesis from Löıc Paulevé and co.!
https://bnediction.github.io/bonesis/
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Formal synthesis of Boolean networks

Boolean network

?

A
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C
+

+
−

+

+
−

−
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dynamics
specifications

influence graph transition graph
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https://bnediction.github.io/bonesis/

FM for BN synthesis 10 / 13

https://bnediction.github.io/bonesis/


Formal synthesis of Boolean networks
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https://bnediction.github.io/bonesis/

FM for BN synthesis 10 / 13

https://bnediction.github.io/bonesis/


Propose fix if UNSAT

▶ A Boolean network f consists of n local functions Bn → B (one per
species in S).

▶ BN synthesis may be UNSAT because of conflicting dynamics
specifications.

▶ To remove as few conflicting specifications as possible, find
maximum independent sets in the conflict graph.

1

2

3

4

5

6
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Conclusion and perspectives
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My research questions
Biological system

in vivo

in silico

Reaction networks

Boolean networks

R =
{
Ri : Ri

ei−! Pi | i = 1 . . .m
}

reaction, reactants, products, kinetics

B =
{
f X : B|S| ! B | X ∈ S

}
local update function

(mostly) time series from diff. eq.

Transition graph

→ discrete time, boolean values

00 11
10

01

fX : (A ∧ B) ∨ ¬C

R : A + B
e
−! 2 ∗ C → continuous time and values

temps

qu
an

ti
ti
é

Models

Various other formalisms

synthesis

xp / simulation

Improve synthesis and analysis of models, study abstraction relationship
between the formalisms.
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Thank you for your attention.



From RN to BN: the big picture
Biological system Wet data

Dry data Model
experiment

analysis

experiment

analysis

test

test

Wet lab
in vivo

Dry lab
in silico

reaction network

Boolean network
experimentDry data

1
2

3

Model

synthesis

Hypotheses

1. Formalize the relationship between RN and BN

2. Use BNs to facilitate some analyses on RN

3. Improve the BN synthesis methods
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Perspectives

1. Formalize the relationship between RN and BN
Two conjectures to investigate(*), reverse process(*)

2. Facilitate RN analyses
Make SBML2BNET easy to use, use more evaluation criteria,
include more knowledge in the synthesis, analyse FO-BNN
themselves (process more RN, compute attractors(*))

3. Improve the BN synthesis methods
Investigate, in a controled environnement
▶ when we can’t fullfill the constraints(*)
▶ overfitting to the sequence of configurations?
▶ impact of the choice of the binarisation procedure and error

measure
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Minimal DNF
Given a set S of inputs for which a function f eval. to 1, each
minimal-by-inclusion set of nodes that covers exactly S forms a
(subset-)minimal DNF of f .
f might have several (subset-)minimal DNFs.

Example: S = {abc, abc, abc, abc, abc} (light green) ; {ab, c} (dark green)

16 / 13
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