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Modelling biology with reaction networks

R = {Ri : Ri
ei−→ Pi | i = 1 . . .m}

reaction, reactants, products, kinetics

Ordinary Differential Equations (ODE){
Ẋ =

∑
i∈1...m ei × (Pi (X)− Ri (X)) | X ∈ S

}

Example

S = {S,E,C,P}

Renz =


Ron : S + E

eon−−→ C

Roff : C
eoff−−→ S + E

Rcat : C
ecat−−−→ E + 2× P



odeRenz =



Ṡ = − eon + eoff

Ė = − eon + eoff + ecat

Ċ = eon − eoff + ecat

Ṗ = 2× ecat

(numerical) solving → continuous time and values
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Problem with numerical solving
▶ Kinetic parameters are hard to measure / estimate
▶ Can’t picture the whole behavior of the systems (simulation

with an infinitly many combinations of initial conditions)
▶ Technical problems: which integration method ?

hyperparameters ? Stiffness, float representation. . .
▶ We lose the causality of events (except with Euler, which is

inefficient), necessary to reason qualitatively on the dynamics

Example

Renz =


Ron : S + E

eon−−→ C

Roff : C
eoff−−→ S + E

Rcat : C
ecat−−→ E + 2× P



Example

Point moving along an axis : ȧ = 0; v̇ = a; ẋ = v
Analytical solution : a(t) = 1; v(t) = t; x(t) = t2/2
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Problem with numerical solving – causality

▶ We lose the causality of events (except with Euler, which is
inefficient), necessary to reason qualitatively on the dynamics

Example

Point moving along an axis : ȧ = 0; v̇ = a; ẋ = v
Analytical solution : a(t) = 1; v(t) = t; x(t) = t2/2

Analytical solution

and clever solvers*

t 0 1 2 3

a 1 1 1 1
v 0 1 2 3
x 0 0.5 2 4.5

* adams, stiff, rk, rkf, fix, in Scilab
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Problem with numerical solving – causality

▶ We lose the causality of events (except with Euler, which is
inefficient), necessary to reason qualitatively on the dynamics

Example

Point moving along an axis : ȧ = 0; v̇ = a; ẋ = v
Analytical solution : a(t) = 1; v(t) = t; x(t) = t2/2

Analytical solution and clever solvers*
t 0 1 2 3

a 1 1 1 1
v 0 1 2 3
x 0 0.5 2 4.5

Euler with ∆ = 1
t 0 1 2 3

a 1 1 1 1
v 0 1 2 3
x 0 0 1 3

* adams, stiff, rk, rkf, fix, in Scilab
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Abstract simulation [Niehren et al., 2022]

Euler algo:

V =
{
X, Ẋ, X

next
, Ẋ
next

| X ∈ S
}
, interpreted over reals.

(1) X (2) Ẋ = f
(
R

|S|
+

)
(3) X

next
= X+ Ẋ×∆

▶ Analogy with abstract interpretation of programs
[Cousot, Cousot, 1977]

▶ Causal relationship encoded in a first order logic formula ϕ
FOBNN: First-Order Boolean Networks with Nondeterm. updates

▶ A model of ϕ on S = {−1, 0, 1} projected on S ∪ S
next

⇝ a transition Bn → Bn over discrete time
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X, Ẋ, X

next
, Ẋ
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Example on Renz – reactions and odes

S = {S,E,C,P}

Renz
Ron : S + E

eon−−→ C

Roff : C
eoff−−→ S + E

Rcat : C
ecat−−→ E + 2× P



odeRenz
Ṡ = − eon + eoff

Ė = − eon + eoff + ecat

Ċ = eon − eoff + ecat

Ṗ = 2× ecat

e: mass action law
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Example on Renz – FOBNN

e: mass action law
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Example on Renz – computed transition graph

S0E0C0P0

S↑E↑C↑P↑

S↑E↑C↑P0

S↑E0C0P↑ S↑E0C0P0 S0E0C0P↑ S0E↑C0P0 S0E↑C0P↑

S↑E↑C0P↑

S↑E↑C0P0

S↑E0C↑P0 S↑E0C↑P↑ S0E0C↑P↑ S0E↑C↑P↑ S0E↑C↑P0 S0E0C↑P0

with mass action law constraint
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From FOBNN to Propositional BNN

FOBNN: First-Order Boolean Networks with Nondeterministic updates
terms + existential quantifiers + the finite domain of sign

=⇒ satisfiability is decidable and an FOBNN can be effectively
translated into a propositional logic formula.

Joint work with Hans-Jörg Schurr (univ. Iowa) : sound and com-
plete translation to propositional logics + implementation with a
SAT solver.

▶ Fast enumeration of transitions

▶ Find fixed-points (inescapable configurations)
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Summary of the workflow
An ODE system → an FO formula → an equisatifiable
propositional formula → a transition graph → model checking

S0E0C0P0

S↑E↑C↑P↑

S↑E↑C↑P0

S↑E0C0P↑ S↑E0C0P0 S0E0C0P↑ S0E↑C0P0 S0E↑C0P↑

S↑E↑C0P↑

S↑E↑C0P0

S↑E0C↑P0 S↑E0C↑P↑ S0E0C↑P↑ S0E↑C↑P↑ S0E↑C↑P0 S0E0C↑P0

▶ hat is not complete nor tight
▶ snake is complete and tight.
▶ FOBNN are complete but not tight (indeterminacies)
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C0E0P0S0

C↑E↑P↑S↑

C0E↑P↑S↑ C0E0P↑S↑

C↑E0P↑S↑

C0E0P↑S0

C↑E0P↑S0 C↑E↑P↑S0

C0E↑P↑S0

C↑E↑P0S↑

C0E0P0S↑C0E↑P0S↑

C↑E0P0S↑C↑E0P0S0C↑E↑P0S0

C0E↑P0S0

Renz without the mass action constraint
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Conclusion

▶ Abstract simulation to reason qualitatively on the dynamics of
ODEs

▶ FOBNN soundly overapproximate the ODEs traces with Euler

▶ Translation to propositional logics → SAT-based model
checking technics
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Future work

▶ Use FO/P-BNN to anticipate other dynamical properties
(beyond fixed-points : limit cycles, stability of steady-states)

▶ Refine the abstraction (eg : add logical consequences of the
equations)

▶ Further comparison to other Boolean abstraction of biological
systems (Boolean semantics of Biocham, Boolean automata
networks)
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Thank you for your attention.



FO to P

▶ flatten the equations

▶ translate the equations using 2 propositional variables for each
term.
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